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The exact solution of the contact problem of the action of a semi-infinite gir-
der on an elastic strip is used to construct a corresponding system of piecewise
homogeneous solutions which are then used to study the problems of compression
of an elastic strip by a periodic succession of identical finite girders., The arbi-
trary constants appearing in the piecewise homogeneous spolutions are determ-
ined from an infinite system of algebraic equations possessing a normal, two-
sided determinant with exponentially decreasing elements,

The problem of action of a semi-infinite girder plate on a linearly deformable
foundation and, in particular, on an elastic strip, has been first solved by Popov
[1, 2] who however used a different method.

1. Let us consider a semi~infinite girder plate « > 0, y = 1 of constant thickness
h resting on an elastic layer 0 < y <C 1, which in turn lies on a perfectly rigid, smooth
foundation, Assume that the load ¢ (z) on the plate, the transverse force P and moment
M applied to its edge, and the normal extra load r (¥) acting on the free part z < 0
of the layer, do not vary in the direction of the girder plate edge and, that the friction
on both surfaces of the layer is zero. Then the elastic layer will undergo plane deforma-
tion and the boundary conditions of the problem for a corresponding infinite strip 0 <C
¥ <1 compressed by a semi-infinite girder x > 0, y = 1 have the form
Txy = v =0 (y = 0), Toy =0 (y=1) (1-1)
oy =r@y=12]0,M@=Ddv/0"t+oy=q@)y=1220 (12)
D =Y pEH (1 — ve)~!
where D is the rigidity, £, is the modulus of elasticity and v, is the Poisson's ratio for

the girder.
We seek a solution of this problem in the form of Papkovich-Neuber

1 3 .
=Fy— > 9 yF1xks -+ F .
u(z, y) 2 4(1_V)(,m(y 1+ 2 4 (1.3)
vir,y)=F) — __1_._ i(yFl - xFy -L F)
41— ) dy =

Letusset F, = 0, Fy = 9F, /9y, F3 = 4 (1 —v) (Fs — F;) where F, and F; are har-
monic functions, and apply the two-sided Laplace transform to the expressions (1, 3).
Taking the conditions (1.1) into account, we obtain

o0

u(py) = S u (2, y) e P dz = C (p) p e (p) — o ()] (1.4)

—00
oo

v(p, y) = S v (z, y) e P¥de = C (p) [¢' (p) -+ p' (P)]
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p{p)=2(1 — v)sin pcos py, & {p) = sin p cos py - p {cos p cos py -+ ¥ %in p sin py)
Here the prime denotes the derivative with respect to ¥ and the function C (p) satisfies,
by virtue of the conditions (1, 2), the equations

P+ P =—CE P gt @ T ()= —C P e (1)
where
Ny (p) =sin2p + 2p, N, (p) = 2ap®sin? p - sin 2p 1+ 2p, a == 2 (1 — +%) E-1D

g i

@ ={ oy @ e = { roen
0 ——‘-m
o 0
‘1* {P} = g q ($) e“i”xdx, n (p) — § 7 () e~ PX
V] _:m

The functions &y (p) and N, {p) both are odd, As the following inequalities show, they
have no real and no pure imaginary zeros except p = 0 :

24p® sinp - sin 2p + 2p >sin2p - 2p >0 for p >0
2ap3sh? p 4-sh2p-+2p >sh2p+2p >0 for p>0
Let us denote the complex zeros of the functions Ay (r} and N, {p} in the quadrant

Re p >0, Im p > Oby ax and by (k = 1, 2,...), respectively, and introduce the numbers
ag = —a.gand b_; = — by. The following estimates hold for large k :

ag = kn 4+ 0 (Ink) -+ 0 1), by =ka 4o (1) (1.6)
By the Laplace inversion theorem we have

=g (e re@—s N, v= L (omie m o onerap

i 2ni
L I
= ........__E 20 X - E ” e
Sy 5o (i+’~=}§0(p)pe(p)e dp, ©ox 2———-—~—»~m(1+v)§0(p)s ()P dp
e E * pX
Ty = m SC(P) pe’ (pye™dp 4.7

The domain of variation of the parameter p and the path of integration L passing
through this domain both depend on the character of the functions r {z) and ¢ {z), and
on the form of the displacements and stresses under investigation, Suppose ihat the loads
g () and r (2) are local or decrease exponentially when | x|} —» o, Then the function
u (p, ¥) exists in the strip 0 < Re p < a, while the transforms of the displacement
v (x, ¥) and of all stresses, as well as the functions appearing in (1. 5), all exist in the
strip | Re p | < o and in particular on the imaginary axis,

Thus the Wiener-Hopf equation [3]

o™ (p) = K (p) ™ (B) + K (p) 0* (P) — o~ (p) (1.8)

obtained by eliminating the functions C (p) from (1. 5) can be solved by treating it as
a problem of linear conjugation [4] on the imaginary axis, with the coefficient K (p) =
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Ny (p) [ N, (p) and the free term K (p) v* (p) — o~ {p)-
First we consider the homogeneous problem

+ . -
ot (p) = K (p) v~ (P) 1.9
nhtainad whan tha farcas ara annliad ta tha and_farne nf the agirdar anly Wa weita £1 Q)
Goainea wien a8 10ICCs al€ appiied Lo N end=1aCe O i ZIIaeT Ohiy, WOo WIliE (1.9
in the form .

X*(p) =G (p) X~ (p) (1.10)

X*(p) = ah (1 — pPlIn @) X~ (p) = (1 4 p): 1o (p)I7
G(p)=a{l — LK), —nlag(lEp <

The function G (p) which satisfies the H&lder condition over the whole contour, has the
power index # = 0. Foliowing F. D, Gakhov, we can write the solution of the problem

(1.10) in the form ioo e
o ¢ InG@dt
X (p)=exp {2}5 \ e

—1i00

21 t—it T

100

L " 1 .
X = (i1) = exp {_1_ \ InG@®adt | - InG (n)}

Returning to the initial notation and taking into account the parity of the function K (p),
we obtain the following canonical solution of (1, 9)

o v p ¢ infa(l - 2)"2K (it)] dt
st (p) = a1+ p)Mexp {7\ L | .11,
0
Mo~ (p) = [3" (—P)]7? (1.12)
and we have
o*o (p) ~ «/op~"s when p — o0, Rep >0 (1.13)
On the imaginary axis we have -
So" (%) = (1 4 1) (1 + ) A [ K (7)) exp | i’ESm [M + ﬂf:z K (it) l at )( (4.14)
Ut L4 K (i) B — 7
The general solution of (1, 8) with r () = 0 has the form
i
o+ (p) = — 2 () 5 O o (p)(Ap+ B 115
(p) e ) O t 6™ (p) (Ap + B) {1.15)

—i

and on the imaginary axis we have (1.16)
AN

o Gat(iT) v vttt ] dt Akt (1) - oot (0) [Ait + B
oty = 2200 ([0 O] 4 K ot () LAiT 4 )

—1i00
From (1.15) and (1,13) it follows that if| n7(it) | ~ ¢/"* (s > 0) when ¢ — oo, then
0*(p) ~ p~= when A4 = B = 0 and p — co. Using this estimate and the corresponding
proof from [5] we can conclude, that the character of the normal stresses under the edge
of an arbitrarily loaded girder, is described by the formula

oy (z,1) = A (nax) s -+ BO (/%) + O () when x— +0 (1.17)

in which the constants A and B can be obtained from the condition of equilibrium.
Let the moment M act in the anticlockwise direction on the unit end-face of the girder
plate and the transverse force P in the direction of the y -axis, Then
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P = S Sy (x, 1) dx — T (0), M = S Sy (z, 1) zdz -+ ™ (0) (1.18)
0 0
where the asterisk denotes the derivative with respect to p. Let us now substitute the

following expression into condition (1,18):

oy (7, 1) = o= Ss* (p) eP¥dp

L
in which the contour £ has been displaced to the left past the imaginary axis, and the
order of integration has been changed. Integrating with respect to = and completing
the contour I from the right with a semicircle of a large radius, using the estimate
(1.13) and the fact that the function o (p) is regular in the right semiplane, we obtain
by virtue of the theorem of residues, the following:

P =07 (0) =0*(0), M= —0"*(0) +n™ (0)
Hence, taking into account the relations
00" (0) =1~ (0) = K (0) =1, K* (0) =0

and using the formulas (1,12), (1,14) and (1, 16) as well as their differentials with res-
pect to p , we obtain after some manipulations

A=—M-—st¥ () [P—}—_;_ . (0)]+ %Tﬁ* ) +

ico

w ) el el

100

. (1.19)
e A ¢ [t at ()
B=P 4 —_ JELLI S S ) st
+2m’ S [no—(t) 1 (0)] t+T
ko - o [ C (KRG K* G0 tdt K* (i)
o™ ) = T (LT){ILS[K(it) K(ir):ltﬂ_jrz 7K (i‘r)}
0
v gy v K* (it) dt
% © TS K (it) ¢
In particular, when ¢ (x) = 0 we have
A= —M—0cy™0)P,B=P (1.20)

Let us discuss the types of load which we will need on Sects. 2 and 3. We assume
r)=0,q(x) = qkeakx then y* (p) = g¢; (p — ap)~'. Completing the contour of inte=
gration in (1,15) from the left by a semicircle of a large radius and using the Jordan
lemma together with the theorem of residues, we obtain

ot (p) = oo™ (P) {l(p — ax) no~ (@)™ ax + Ap + B} (1.21)
If r(z)= rkeb"x and ¢ (x) = 0, then ¢~ (p) = ry, (b — p)~t and the Liouville's theo~
rem applied directly to (1, 8) yields

ot (p) + o~ (p) = 0o (p) {rs g — p) 00" (bp))! -1- Ap - B} (1.22)
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Let a concentrated force {—Q) act on the girder at the point « = ¢, In this case the
solution of the problem is expressed by (1.15) in which the subsutution n* (p)= — Qe
must be made,

Let us construct the solution in a different form, We separate the problem (1,1) and
(1.2) with the conditions 7 () = 0, P = M = 0 and ¢ (z) = —Q8 {z — ¢}, where § (x)
is the Dirac delta function, into two parts, the fundamental problem

Tay=V=0 at y=0, 1., =0 at y=1
Ne)=—Q8(x —c) at y=1 (1.23)
and the mixed problem consisting of (1.1) and {1, 2) with the conditions
g@ =0 r@=—M@1), P=—P® M=_—u® (1.2%)

Here o (2, 1) denotes the normal stress in the strip at y = 1, while P® and M® are
the transverse force and moment in the solution of (1.23) at the point y = 1,2 = 0,
This solution is obviously given by the formuias (1, 7) and we have
L 2QU 4w
C(p) = T AT (1.25)
Expanding the integral in the expression for o, in (1. 7) into a series in terms of residues
expressed by the zeros of ¥, {p) and integrating with respect to » from —oo to 0, we

obtain £ - X b .
O @, 1) =Re Deget, PO =—Ro }gckbm
k=1 =t (1.26)
= “boe
M® —Re Mepdi®  op=2Qe F Ny () [N )]
H==l

Solving the problem (1, 1), (1., 2), (1.24) and (1, 26) by means of the formula (1, 22) and
adding the solution (1, 7), (1. 25), we obtain

u=QgH{ple(p) —p @), e, 2}, v=QH{e (p) + 9" {p), ¢, =}

Hf r Uy = 1+V e_pc Mdo*(p) t b', t B; pxd
(@ e 2} niE§{p2Nz(p) Wy O e B+ G P11 () e dp

Ni{t)rp (D)

I (T, pY= T (p—1)5 (V) No* (1)’

(7)== g™ 1.27)

In the same manner we construct a Green function for the problem of additional load,
However in this case we cannot apply the Gakhov's method directly because when
r (z) = 0, the free term in (1, B) does not satisfy the Holder boundary condition,

2. Let us construct a system of piecewise-homogeneous solutions, setting in the con=-
ditions (1,1) and (1,2) ¢ (&) = r (x) = 0 and assuming that the girder end is load-free.
Following [5] we shall consider the subsystems with singularities at the points z = oo
and » = —oo separately,

The homogeneous boundary conditions

v=Tyy =0 (y = 0), N(x) ==ty =0 (y=1)

are satisfied by the solution
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ukl (z, y) = O {p [e (p) — p (P)]}, V! (=, y) = DKL {&' (p) + p’ (p)}

b b
OFL {7 (p)} = Ay Re [f (b) e %] + By Im [ (b) ¢ ¥')
where Ay and By are arbitrary constants and k =1, 2,... .
Supplementing this with the solution of the mixed problem (1,1), (1. 2) with the con-

ditions 1@ =0, r@=—cl@1)

P=— m_ﬁ__v){Ak Re [b4N1 (by)] 4 By Im [bxVs b1}

[Ax Re N1 (bg) 4 By Im Ny (by)]

— E
21+ )
which, by virtue of the formulas (1. 7), (1. 5) and (1. 22) have the form
uf (@, y) = OF2 {ple(p) —p (P)h  ¥*2(z, y) = O™ (e’ (p) + ¢’ (D)}
O (f (p)} = Ay Re Hy, [f (p), @] + By Im H , [f (p), 7]

. _ Ny so* (p) f (p) eP*dp
Mo U0+l = s \ 2 e

i
we obtain the first subsystem (k = 1, 2,...)
u® (2, y) = O® {p [e (p) — p W)}, v®) (=, y) = O {&' (p) +p' (M)} (2.1)
O {f ()} = Ay Re Hy [f (p), 2] + By Im Hy I (p, =),
Hi [f (p), @l = 7 (bp)e ¥ +Hyg [f (p), @]

The second subsystem with a singularity at @ = — oo, is constructed in the analogous
manner from the solution of (1, 21), and has the form (¢ = —1, —2,..))

u® @z, y) =0 ple ) —p @)}, @ 0= 0O (e (p) 4o ()}

oM (f (p)} = Ay Re Hy [/ (p), z] +By Im Hy 1f (p), =] 2.2)

Hi [/ (p), @1 =J(ap) e —

N (ag) s s™(p) f(p)ePdp

2ninp” (ay) . (p—ag) Ni(p)

The elements of both subsystems are self-balanced. A solution determining uniform
compression and rigid displacement of the strip under the girder has the form

u® (2, y) = A B wtBy, VO, y) = —Apv (1 — v)ETy (2.3)

The system (2,1) — (2. 3) can be used to solve the problems in which an elastic strip
or a rectangle is acted upon by several, arbitrarily loaded finite girders, and for solving
various periodic type problems with several girders per period, The problem of deter=-
mining the coefficients 4, and By can always be reduced to that of solving normal
systems of algebraic equations containing infinite matrix elements the number of rows
and columns in which decreases exponentially,

8, As an example, let us consider the following problem, A number of identical gir-
ders of length 2 and hight & are periodically distributed over an elastic strip placed
on a plane, nondeformable base, The distance between the adjacent ends of the neigh-
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boring girders is equal to 2p, there is no friction at the strip boundaries, and two con-
centrated forces (—Q;) are applied symmetrically to each girder, at the distance ¢ from
each end,

Iet us connect the point @ = 0, y = 1 with the left end of any one girder, retaining
the previous notation for the elastic constants, Then by virtue of periodicity and sym-
metry, we have the followng problem for an elastic rectangle s

l::‘*[fx,u_.—_o(yru()Y -—},Lgxiv:?\,), 'I:'xy:()(y:1, ‘—*HQ;CE\Q:}\,) (3.1)

oy, =0y =1, —p o0,z = Qb r—alr=1L0<<=z<<A B2

u=Tgy=0{x=h o= —p 0Ly << 3.3
v/ fx=0B3v/d* =0(y=1,2=2»~) (3.4)
We shall seek iis solution in the form
o o
w=u® 4 2 w8 R + 2 MY 3.5
k=—noc —_——0

where «® and v represent the solution of the problem (1.1), (1.2) and are given by
(1,27) with the following boundary conditions

P=M=0 r{x =70
q (x) = _016(1'““0)‘"026(””"7”0”’27")

We note that the application to the girder of an additional arbitrary force Q, outside
the rectangle, satisfies effectively the second boundary condition (3,4), The first con~
dition follows automatically from (3, 3). Expanding the function u® at the rectangle
ends into series in residues expressed in terms of the zeros of N, (p) for z = A and of the
zeros of Vy (p) for = = —p we obtain, by virtue of (1,27),

—nG

2
w0y ) = D U D gy Bn) % B+ ey G X 00+ 10

M), k=1

2 o
u® (—p, v) = D) Qm D) g (@) X (@8 + by @) % (GR)] 3.6)
m=1 E=1

o0

4A{q ph m _ -
by (p) = 2G| B e ) glf’:m (s P)+ b sy P11}

_4U+vet(®) S L
tmg (P = W Z {tm (s PY+ tm (B PY]

&=1

n=e" n@=eTE0 oy (p) =1nple(p)—p(p)]

2
HP)=—t@E =  h=v{l+VET D Qntn(®
m=1
The latter and the conditions (3. 3) together imply that 4, = —i,E (A 4 p)™' and

By = —top (A + W)L Writing the displacements u'®) given by (2.1) and (2. 2) also in
the form of series in residues we obtain,
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for k=1, 2,...

— 00

by s
ul (hy y) = (dg— in){e " o) - Z (T bk, ba) e "% (bn) -+

n=—1

73 (g B) % Gl (i B e K0 B+ D) 172 G b ™ Bw) +

n=-—1
p (—bkv En) eljn)- x (;n)]} (3'7)
u® (—p, y) = B {(Ag— By [To b an) € ™% (an) 4 T2 (g an) e ™ 1 (@n)] +
n==1

(A + B [Te Bpe an)e ™y (@) + To By @) ¢ "y (@)1}

N1 (7)o~ (P) Ty (e, p) — — N1 (1) 507 (p)

T (t, p) = ,
15 P) (p— 1) 50" (1) N2* (p) (p— 1) 50" (T) N1* (p)

and for k=—1, —2,...

w (g ) = B (g~ B [T (@p br) € "L bn) + Ts (abn) e "y (b)) +
n=—1
. _ N . I Y
(A 1B [Ts @k ba) "% () -+ To (e Br) &7 G} (3.8)

W () = (= 189 [T @)+ D Talan an) W )+

n=1

T (o an) ¢ ™ L @1} 4 (e 1B [ @)+ ) (T e W) +
_ n=1
Ty @ a e ™ (@)l

- Na(p) 0™ (p) _ N2 (7) so™ (p)
Tslm p) = P—7m (T) M*(p) ' Ts( P = (P — 7)Mo (T) N1* p)

Let us now substitute the series (3. 6) — (3, 8) into the expression (3, 5) for the displace=
ment u, at the same time satisfying the conditions (3, 3) imposed on « (this is sufficient
for the conditions for 7., also to be satisfied), We change the order of summation in the
double sums obtained, and, noting that % (—p) = ¥ (p), equate the multipliers of the
functions X (ax), ¥ (ax), y (by) and y (by). Introducing the new unknowns

Xp — 1Yy, = (A — iBy) exp [by G2 — Y2 0)] for bk =1
Xy — Y= (A — iBy) exp (—agp) for &k < —1
and separating the real and imaginary parts, we obtain the following infinite system of
algebraic equations Qs Re s (dy) -+ Xy -+
D AXn Re [@n (@dp) + @u (@] + Y Im [@n (i) + @n (d)]} = — Qi Repi(dy)  (3.9)
. —Q:Im 2 (dp) + Vi +
2, (Y Re (@ (dy) — @n (k)] — X 1m [ @ (di) — Pr (i)} = Q1 Tm 1 (d)

N==—00
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where under the summation signs we have n=£0; k = 41, £ 2,...; d; = by Wwhen

k>1and dy = a when k < —15 Yy (ay) = tyg (—ay) »
Y (b)) = £, (—Dy) exp [Y2 by (A — €)] (3.10)

Pn (ag) = T2 (by, —ay)exp (Wag — 3/2 by + Yz cby) (nz=1)
Pn (bk) = T1 (bns —by) exp [-—A (3/aby + Yo by) +Yac (b — b)) (21
Pn (ag) = T3 (an, —ag) exp (Rag 4 pan)  (n<—1)
Pn (k) = T's (an, —bg) exp (wan — Yz Abx — V2 cby) (n<<—1)
Satisfying the second condition of (3, 4) we obtain
—QuH [2(1 — ) p*siazp, 2h—e¢, Al + (311)
D) (XnRetn Yo Imyn) = QuH [2(1 —v) pisin? p, ¢, A]
n=—o
in which
Yo = —Hp [2 (1 —v) ptsin® p, Al exp [—b, G2k — Yac)] for n >1
Yo = —Hp [2 (1 — V) p*sin® p, A] exp (anpu) for n << —1 (3.12)

Formulas (3,10) and (3, 12) show that the nondiagonal elements of the system (3, 9),
(3.11) decrease exponentially in both the number of rows and the number of columns,
Therefore this system can be classed as a normal Poincaré-Koch system [6]. Estimating
its solution (see Sect, 2 of [5]) for large & we obtain Ay, By~ O (| k [%2 ¢72" I&lY) for
k< 0and 4y, By ~ O [k & ™2i-0)] for k > 0.

We note that in this paper we have solved another two problems, Setting 4y = By =
0 for k < -1 in the expressions (3, 5) and retaining, out of four blocks in the system
(3.9) only the block containing the elements with indices % > 4 and » > 1, we obtain
a solution of the problem of pressure of a single girder of length 2)A on an elastic strip,
while setting ¢, = 0 and 4y = B, = ¢ in(83,5), for # > 1, neglecting (3,11) and three
superfuous blocks of the system (3, 9), we find that the expressions (3, 5) represent a solu-
tion of the problem of pressure of two semi~infinite girders the ends of which are sepa-
rated by 2p.

In conclusion the author expresses deep gratitude to G,Ia, Popov and A, A, Khrapkov
for the attention given,
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